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Abstract: The Internet of Things (IoT) gets real. Already today, there are more 

connected devices than humans. In order to leverage this trend platforms are 
required to enable building and operating of applications. In contrary, there is 
hardly any systematic research available that evaluates the capabilities of existing 
IoT platforms. This paper contributes to the understanding of the current IoT 
platform landscape (1) by reviewing six selected commercial IoT platforms, and 
(2) by inducing an architectural model which depicts the main building blocks of 
an IoT platform in a comprehensive way.   

1 Introduction 

There seems to be a consensus in the industry that the Internet of Things will be the 

“next big thing” (e.g. [Adi00, Pro00]). Cisco predicts 50 Billion internet-connected 

devices by 2020 [00a]. ABI Research speaks of 10 Bn wireless connected devices today, 

and more than 30 Bn in 2020 [00b]. Already now, there are more connected devices than 

humans. But has the Internet of Things changed our lives or radically changed how 

business works? In the 2013 Gartner hype cycle of emerging technologies IoT just 
reached the “peak of inflated expectations” and the “plateau of productivity” is foreseen 

to be not reached before the mid-2020s. Machine-to-Machine (M2M) communications 

and wireless sensor networks (WSN) have already overcome the peak but are still 

assumed to reach the plateau in 5 to 10 and more than 10 years respectively [00c]. In 

order to reach the plateau of productivity it is vital that standards and platforms are 

established that ease the process of building and operating applications on top of an 

emerging technology. In the case of IoT and, as we see, the related technologies M2M 

and WSN, an ever increasing number of commercial platforms appear on the market.  

The paper is structured as follows. First, we start by setting the term “Internet of Things” 

in context since it is used inflationary during the last years and is far from being 

unambiguous. Second, we refine our understanding of an IoT platform and present 

related work. Third, we review six unique platforms which were selected by a focus 

group. We will see that each platform has distinct features and shortcomings and is 



useful for specific domains. Fourth, on the basis of the individual platform assessments, 

we induce an architectural model depicting functional building blocks of IoT platforms 

in a comprehensive way. Thereby, this paper tries to contribute to the understanding of 

existing IoT platforms. Finally, we discuss the results and identify future research 

problems. 

2 Foundation and Related Work 

2.1 The Internet of Things 

In late August 2013 the term “Internet of Things” entered the Oxford dictionaries. It is 

described as “a proposed development of the Internet in which everyday objects have 

network connectivity, allowing them to send and receive data“ [00d]. Obviously, this is 

more a vision than a definition. Actually, this vision goes back to the year 1991 and an 

article of Mark Weiser where he stated that computers will finally “weave themselves 

into the fabric of everyday life until they are indistinguishable from it” and should be 

aware of their environment [Wei91]. This article can be seen as the origin of the research 

field called ubiquitous computing. 

The term “Internet of Things” itself appeared the first time as the title of a Forbes article 

in 2002. Kevin Ashton, who headed the Auto-ID Lab at MIT, exclaimed: “We need an 

‘Internet-for-things’, a standardized way for computers to understand the real world“ 

[Sch02]. The Auto-ID Labs are a world-wide research network of EPCglobal which is 

responsible for the standardization of barcodes and the successors like Radio-frequency 

identification (RFID). They focus on logistics where goods need to be uniquely 

identifiable and trackable in order to build a self-organizing network where goods find 

their way like data packets do in the ordinary Internet [MF10].  

 

Figure 1: Approaches towards the Internet of Things 



Another approach to the IoT stems from telemetry. Here, sensor data from remote places 

has to be transferred to a central site. With the advent of mobile phones and cellular 

networks, telemetry evolved to machine-to-machine communications. Typical 

applications are fleet management and asset tracking. Here, Everyday objects (e.g. cars) 

and even the environment (e.g. parking lots) get network connectivity.  

The industry, especially network providers, often uses the term M2M and IoT 

interchangeably. In contrast, most of today’s M2M applications are heavyweight custom 

solutions that are in no way based on standards and interoperability. Notably, the term 

M2M is usually business-centered whereas the vision of ubiquitous computing is human-

centered [Mat00].  Furthermore, in typical M2M scenarios, the computation and 

intelligence is centered at one specific location (e.g. central enterprise app in an RFID 

scenario) whereas ubiquitous computing is concerned with distributive computing where 

computational tasks can be distributed among the network [MS03] (see figure 1). 

Related to ubiquitous computing, the research field of wireless sensor networks (WSN) 

and wireless personal area networks (WPAN) emerged in the mid-1990s. Both build 

self-organizing networks of smart objects which can interact with the physical world 

around them [DP10]. Today’s typical WSN/WPAN scenarios involve proprietary 

wireless protocols like ZigBee and Z-Wave where gateways are needed to translate 

between proprietary and IP networks. These gateways often need application specific 

programming and are not interchangeable. In addition, there are small WPAN solutions 

using Bluetooth where the smartphone typically acts as a gateway or mediator (e.g. 

smart watches).  

In recent years, efforts have been made to incorporate the IP protocol stack into smart 

objects. Since the requirements of smart objects differ greatly from that of a usual 

participant of today‘s Internet, the IP stack has to be adapted [RN10]. This has to be 

done such that a transparent end-to-end connection between devices over the Internet is 

achieved. For this purpose various protocols and technologies like 6loWPAN (IPv6 for 

low power wireless personal networks), ROLL (routing over lossy links) and CoAP 

(constrained application protocol) are being in the process of standardization by the 

Internet Engineering Taskforce (IETF). On the M2M side, standardization processes 

driven by the European Telecommunications Standards Institute (ETSI) aim to prepare 
the LTE networks for massive low-throughput non-human communications and 

therefore full IP connectivity in individual things. 

2.2 IoT platforms 

IoT platforms provide a comprehensive set of generic, i.e. application independent IS 

functionalities which can be leveraged to build IoT applications [AtIM10, CaJS12, 

LP00]. In the context of our work, prior research in the domain of IoT platforms has 

identified key IoT building blocks on the basis of a deductive as well as inductive 

manner.  

Castro et al. is one of the very few papers which conduct an analysis of M2M platforms 

based on an inductive approach [CJS12]. The goal of their paper is to provide an initial 



analysis of the requirements for an M2M platform. They analyze six available IoT 

platforms in terms of their scope. However, they do not provide an overall architecture 

of functional building blocks. Moreover, while it is indeed hard to select platforms on a 

set of objective criteria in a transparent way, they just select platforms for their analysis 

without providing any argumentation. To the best of our knowledge, there is no research 

available deriving an overall architecture of functional building blocks on the basis of 

existing platforms. 

Several other approaches derive functional IoT platform building blocks on the basis of a 

deductive process. Atzori et al. for example provide an overview on IoT developments 

[AIM10]. As one part of their overview, they describe major building blocks of IoT 

solutions. While they do not depict a comprehensive survey of each building block, they 

thrive to convey the role each building block will likely play in the IoT. Overall, they 

identify three major IoT building blocks: technology (identification, sensing and 

communication technologies), middleware, and applications. Atzori et al. point out the 

importance of Service Oriented Architectures and decompose middleware into the four 

building blocks service composition, service management, object abstraction, as well as 
trust, privacy and security management. As a second example, Lempert et al. provide a 

very detailed architecture based on an ESB architecture [LP00]. However, the overall 

development process of the artifact remains largely unclear. They hardly argue why each 

of the building blocks is needed and how they deduced the model.  

Summing up, while there are several papers available describing what a IoT platform 

should offer from an academic perspective, hardly any information is available on the 

actual capabilities of existing IoT platforms. However, relevant research builds upon 

relevant practice problems (delta between “what is available” and “what is needed”) 
[ES04]. Without a solid understanding of existing IoT platforms relevant practice 

problems can hardly be identified. Therefore, this paper tries to contribute to the 

understanding of existing IoT platforms by giving an overview over available solutions 

and inducing an IoT architecture model. 

3 Analysis of Existing IoT Platforms 

There is a plethora of IoT platforms available today [MM12]. Therefore, to select and 

analyze relevant IoT platforms a focus group was leveraged. Focus groups are an 
established means to investigate new ideas and to check the applicability of a research 

object by practitioners [Tre10]. The focus group was exclusively set up to analyze the 

IoT platforms and consisted of seven people. Tab. 1 depicts the members of this group, 

which met three times to select and assess the IoT platforms. 

Three key criteria were applied to select IoT platforms for analysis: (1) Market share of 

an IoT platform as of today, (2) strategic positioning of platform provider in the market, 

and (3) degree of platform innovation. We are well aware that these criteria are vague 
and that the overall selection process is heavily dependent on the individual experience 

as well as subjective assessment of the focus group participants. However, by outlining 

the focus group as well as the key selection criteria, we try to be as transparent as 



possible. The selected IoT platforms will be described in the following subchapters 

according to three criteria. First of all, the platform provider and its corresponding 

business model will be portrayed. Second, the intended application domain will be 

presented. Finally, the platform itself with its structure and functionally will be depicted. 

Tab. 1:  Characteristics of the focus group 

3.1 Axeda 

Axeda [00e] was founded in 2000 and is a classical M2M solutions provider. The first 
version of the Axeda platform was released in 2009 and in 2011 they introduced a 

freemium and pay-as-you-grow business model comparable to Amazon Web Services. 

There is a free trial version for managing a fixed number of connected products and a 

fixed amount of daily transactions. Exceeding the free trial the license price grows 

gradually with the number of products and transactions. This business model is well 

suited for the ever-growing number of M2M and IoT start-ups. Besides, Axeda offers a 

broad ecosystem with many partners and over 150 customers from different industries. 

Moreover, it was named as the M2M application development platform market leader by 

Strategy Analytics earlier this year.  

The Axeda platform focuses on supporting the application development process rather 

than providing connectivity capabilities; although it offers an agent which can be 

implemented into a physical product to manage the connection to the platform using the 

proprietary Axeda wireless protocol. Once a product is able to communicate with the 

platform, the actual product, communication channel and protocol are “hidden” behind a 

data model which can be accessed and transformed by a rules and a Groovy scripting 

engine. If the agent is running on the connected product, a simple form of remote 

programming is possible, i.e. thresholds can be transferred down to the product. 

Moreover, preconfigured applications, e.g. for location tracking, geofencing, building 

dashboards or automatic software deployments are available and can be customized to 
individual needs. Integration with enterprise software like ERP or CRM can be achieved 

in three ways. The Axeda platform can consume SOAP or RESTful web services via its 

scripting engine, it can provide web services which can be called from the enterprise 

software, or the enterprise application can connect to the platform’s message queue. 



3.2 Digi, Etherios 

Digi International Inc. [00f] was founded in 1985. Initially, the company focused on PC 

boards. Until today, their focus shifted towards embedded and non-embedded M2M-

solutions. Embedded solutions comprise communication modules, satellite 

communication devices, integrated circuits, and single board computers. Non-embedded-
solutions include routers, gateways, and servers.  

Etherios, Inc. was set up in 2008 as a cloud service provider. Its services cover the 

domains of cloud computing in CRM, system integration and application development. 

They put a special focus on the connection of traditional M2M platforms and the cloud 

based CRM platform of Salesforce.com, e.g. their “Social Machine” integrates arbitrary 

machine data into the Salesforce.com cloud solution in real time. 

In 2012, Digi acquired Etherios. The integration of both companies extends Digis 

product and service portfolio enabling Digi to go beyond a pure hardware specialist. The 

merged company acts as a solution provider offering development, service, support, and 

licensing services. However, hardware sales remain the main source of revenues for Digi 

with 95.5 % of total revenue in 2012 [00g]. However, service revenues are anticipated as 

a more stable source of revenue. 

Digis M2M platform started in 2009 as “IDigi Energy” to create a base for smart energy 

networks. “IDigi Tank” was a second use case providing a tank storage monitoring 

platform. In the following, Digi adopted the “ZigBee Smart Energy” standard, launched 

development kits, and explored new use cases like container monitoring and telehealth 

monitoring. The integration of Thingworx’ visualization tools and Etherios’ 

Salesforce.com capabilities further enhanced their platform capabilities. 

From a technical point of view, Digi’s platform comprises communication modules, 
gateways and a software platform. Each of the three levels offers extension points for 

own development. XBee communication modules are based on the industry standard 

ZigBee. ConnectPort Gateways are programmable in Python. An open REST API allows 

the development of own web applications.  

Summing up, the combination of Digi and Etherios allows a seamless integration of 

embedded modules into high level CRM systems. Their solutions are well-established in 

the market thanks to their early market entrance. 

3.3 Eclipse M2M 

The Eclipse M2M [00h] industry working group is a consortium of companies in the 

context of the Eclipse foundation. Founded in 2012, its target is to “encourage, develop, 

and promote opens source solutions that can be used to overcome market inhibitors 

found in most M2M ecosystems” [00i]. Current members are Axeda, Eurotech, IBH 

Systems, IBM and Sierra Wireless. Until now, the working group initiated seven 

different projects: Mihini, Koneki, Paho, Ponte, SCADA, Concierge, and Kura. First 

results are available for Mihini, Koneki, and Paho.  



The Mihini project creates an application environment for the Things in the IoT. Like all 

three projects, it is based on the programming language Lua. Lua is a lightweight 

scripting language, which was developed in 1993. It is not adopted to the M2M scenario. 

This adoption is realized by the Mihini framework. It implements e.g functionalities like 

I/O management, device management, and application management. It runs on top of 

Linux systems like the Raspberry Pi. One the one hand, this decision enhances the 

hardware base of the framework. On the other hand, it does not allow to build small, 

energy saving devices. 

The Paho project focuses on the communication between M2M-Devices by protocols 

like MQTT and OMA-DM. MQTT is a communication protocol that allows both 

Request/Response and Publish/Subscribe communication based on TCP. Currently used 

in messaging applications like “Facebook Messenger”, it also allows a stable 

communication between devices. In contrary, OMA-DM is a device management 

protocol. It allows the configuration, update and error management on devices. Both 

protocols are widely used. 

Finally, the Koneki project focuses an easy development environment. It offers the Lua 

Development Tools and the OMA-DM simulator. The Lua Development Tools are an 

Eclipse-integration for Lua. Syntax highlighting, auto completion and debugging tools 

follow. The OMA-DM simulator allow to test device management functionalities in 

advance. A core functionality is the simulation of a firmware update. 

In conclusion, the Eclipse M2M group leverages existing Eclipse projects, and provides 

widely adopted technical protocols like MQTT and OMA-DM. Its embedded framework 

is heavyweight, own hardware doesn’t exist. The adaption of standard M2M 

communication mesh protocols is missing. 

3.4 Thingsquare  

Thingsquare [00j] is a Swedish company founded in 2012 by Adam Dunkels who was 

named as one of the most important innovators under 35 by MIT Technology Review in 

2009. This was due to his accomplishment in squeezing the internet protocol in a version 

that only uses 100 bytes of RAM (uIP) which has been extensively used by companies. 

The technology that has led to founding Thingsquare is Contiki an operating system just 

like Windows or Linux but not for PCs, but rather for low-power, memory-constrained 
and connected devices. Therefore particularly for the things or smart objects in the IoT. 

Contiki respectively Thingsquare Mist, the commercial derivative, are both released 

under the BSD license and are open source. The business model, as depicted on the 

corporate web site, is to provide services and trainings around open source products 

comparable to the Red Hat Foundation with Fedora Linux. Thingsquare promises to ease 

up the development process of connected products. It emphasizes the use case of 

connecting people through smartphone apps with physical products. Examples are the 

thermostat of Munich based start-up tado and the crowd-funded connected light Lifx, 

which collected 1.3 Million US$ in a Kickstarter project. 



Physical products or things are equipped with a wireless chip running the Thingsquare 

Mist OS. On this basis, the things in physical proximity automatically build a self-

healing wireless mesh network and connect securely (AES encryption) to the 

Thingsquare cloud backend server via a device called edge or border router. Each device 

has its own IP- address (IPv6) and the routing in the mesh is based on IETF RPL. The 

router is distinguished by the fact that it can translate between IPv4 and IPv6 and it is 

connected to Ethernet or Wifi. The Thingsquare approach suits very well to the vision of 

IoT since internet standards are used end-to-end, down to the thing and the connection 

between the mesh and the actual internet is accomplished in a transparent way. 

The backend server then provides an API that allows for example smartphone apps to 

connect with the things. Furthermore, Thingsquare announced a web-based IDE called 

“Thingsquare Code” to build applications for Mist online. This includes the compilation 

and distribution process of embedded software to things. Therefore there is no need for a 

complex tool chain to program embedded devices and change can be done over-the-air at 

any time. Also the health or state of the things can be monitored online. Beyond these 

basic features, neither services for data or device management nor services for business 
logic are publically available or described.  

3.5 Thingworx 

Created in 2009, Thingworx‘s [00k] focus differs quite significantly from platforms like 

Eclipse M2M. Eclipse M2M focuses on the communication of nodes and the web. 

Contrary, Thingworx focuses on the integration, transformation and presentation of the 

created data. It does not provide a solution to the question “how is data collected?” but it 

addresses the problem of “What happens to the data after it has been collected?” 

In 2011, Thingworx defined four building blocks for its platform [00l]: Search, 
Mashability, Composability and Crowdsourcing. These building blocks are realized by 

the different key features of Thingworx. SQUEAL allows the search of distributed data 

and devices. The Codeless Mashup Builder allows the creation of applications by “drag 

and drop”. The Composer integrates different visualizations, data storages and business 

logics. Finally, social networks are used to allow the collaboration of users and 

developers. 

The most important capability of Thingworx is the integration of different channels. 
Devices can be connected by a variety of protocols like REST, MQTT, or traditional 

sockets. It offers an interface to business systems like SAP, Oracle and Salesforce.com. 

It also embeds cloud services like Twitter and Amazon Payments. Finally, social 

services like Facebook, Twitter and Google+ are linked. 

In conclusion, Thingworx focuses on data management in a simple way. It reduces 

complexity for non-technical users by providing mashup technologies.  



3.6 Xively 

Xively [00m], originally known as Pachube, was created 2007 as a data brokerage 

platform by Usman Haque. The name Pachube, pronounced as patch bay (switching 

board as used in telephone operation centers), describes the intention of the platform. 

Like the telephone operator that connects a person to other persons, Pachube allows 
mashing up live or historic data streams, especially from sensors, to build new 

applications that were not thinkable in the single domains before.  

Pachube was noticed by the broader public following the nuclear accident in Fukushima, 

Japan in 2011. There, many individuals used low-cost DIY Geiger counters to monitor 

the radioactive fallout across the country [Cou00]. The data was streamed to Pachube 

and together with the maps API from Google a live map could be created. Later in 2011 

Pachube was acquired by LogMeIn and renamed to Cosm. Due to trademark issues in 
May 2013 the service was renamed again and is known as Xively today. In the course of 

this process a payment model was released to the public in addition to the free trier of 

the service. The business model is mainly around service and consulting, but also based 

on the frequency of sending and receiving data to and from the platform.  

Xively provides a multitude of tools to help individuals and companies to build and 

manage connected products and applications based on connected things. There is an 

extensive list of API wrappers for different programming languages and platforms. This 

allows to build embedded software (C, ARM mbed, Arduino, Electric Imp), cloud 
applications (Java, Python, Ruby), web apps (JavaScript, PHP), as well as smartphone 

apps (Android, Objective-C) that easily connect to the Xively service. 

The Xively web service itself allows to provision, activate and manage devices. In 

essence this means to give each device a unique identity and specific rights to create and 

receive data on the platform. Therefore it can be seen as a rudimentary form of business 

logic, since it allows activating and deactivating additional services coupled to a specific 

device. Besides, Xively has integrated triggers which can call a web service if, e.g. a 

threshold in a data stream was exceeded. There is also an API provided for visualizations 
enabling the development of interactive graphs and dashboards. Many of the 

development tools around Xively are open source, hosted on GitHub and everyone is 

explicitly invited to participate. 

4 IoT Platform Model 

4.1 Derivation of the Model 

The induction of the consolidated model is based on the construction of reference 
models [Bro03, Sch98]. In essence, functional building blocks describing similar 

functionality are consolidated in the induced model (cf. Table 2). We distinguish three 

different abstraction layers in the model.  



First of all, the analyzed platforms greatly vary in their general scope. Some platforms 

offer capabilities to develop and run applications on end user devices, i.e. general-

purpose computers like PCs or smartphones. Others provide functionality to develop and 

run embedded applications on “things”. Finally, the platforms provide functionally to 

centrally coordinate and process execution. In M2M scenarios most often M2M 

middleware solutions and enterprise applications take over the central coordination and 

processing role. In consumer oriented IoT scenarios like smart home a gateway might act 

as the central coordination instance. 

The functionality provided by the platforms can further be classified into two general 

functionality types. There are libraries and code frameworks which can be leveraged for 

application development and execution. We refer to this type of functionality as core 

functionality. Furthermore, there are tools for development as well as life cycle 

management, i.e. managing the platform at runtime. As these tools regularly “span 

across” the core functionalities provided by the platform, we refer to this type of 

functionality as cross functionality. 

The last abstraction layer comprises more fine grained functionality offered by the 

platforms. The elements of this layer are directly induced from the analyzed platforms. 

Table 2 make this process transparent by depicting which platform offers which 

functionality. 

 
Tab. 2:  Induced architecture model 



4.2. Description of the Model 

Most of the previously depicted platforms provide functionally to centrally coordinate 

and process execution. Six functional core building blocks can be distinguished in this 

context (cf. Table 2, Figure 2).  

The business logic of the application can be supported by the platform in different ways. 

Runtime engines, e.g. for Java, process engines, rule engines, and event engines exist. 

While engines like Java provide a powerful programming environment, rule and event 

engines provide less powerful yet simpler ways to implement business logic. Most of the 

platforms focus on the latter approach (e.g. Thingworx, Xively) and thrive for ease of 

implementation.  

Especially platforms with an M2M history like Axeda provide strong out of the box 

functionality to connect to enterprise applications like ERP, CRM or SCM systems. 

Furthermore, platforms like Thingworx provide integration frameworks to enable rapid 

connectivity to web services, e.g. via REST-based communication. Key aspects being 

addressed are authentication, authorization and secure communication. Finally, cloud 

connectivity to services like Amazon Web Services and social services like Facebook or 

Twitter is offered.  

Data management capabilities include machine data collection and storage as well as 

data integration services. Some platforms offer capabilities to store and analyze vast 

amount of machine data. In the context of trends like “Big Data” these capabilities are 

promoted heavily. Other platforms focus on integrating data from different sources on 

the basis of simple data integration (“mashup”) environments. They promise to integrate 

structured as well as unstructured data from social sources.  

The data management functionalities also enable device abstraction. The IoT relies on a 
vast and heterogeneous set of objects, each one providing specific data through its own 

dialect [CJS12]. Therefore, some platform providers offer predefined data models, so 

that device specific data models can easily be transferred into device independent 

models. Hence, in a scenario like fleet management on board units from different 

vendors can be used without extensive integration effort. 

Identity management allows administrating user identities as well as resources, e.g. 

devices or application services across the platform. Granting and revoking access to 
resources as well as providing authentication services are fundamental capabilities for 

executing security policies. Furthermore, monitoring and analyzing access logs are the 

basis for auditing and security analysis. 

Device management provides capabilities to provision, activate and manage devices. 

This covers functionalities such as remote access, configuration, administration, software 

management, device monitoring, and troubleshooting. Furthermore, some platforms 

support the automated delivery of firmware and configuration updates during run-time. 

Today’s IoT platforms provide different functionalities to connect to things. Most often 

they support RESTful API communication via HTTP or standard protocols such as 



MQTT, enable protocol translation or provide so called agents running on specific 

device types. These agents are basically software libraries, which can be embedded into 

a physical product to manage the connection to the platform. 

Things, dedicated sensors and actors measure or change the environment. Thereby, they 

serve as an environmental interface. Their applications are embedded on 
microcontrollers or adapted to dedicated operating systems. Finally, energy and network 

restrictions force them to use low-power, fail-safe IoT communication protocols like 

RPL. IoT platforms like Eclipse M2M and Thingssquare provide operating systems for 

embedded devices like Contiki OS, e.g. enabling wireless mesh networks and secure 

connectivity. Furthermore, they offer IDEs to build embedded applications as easy and 

efficient as possibly. These platforms also facilitate the compilation and distribution 

process of embedded software to things. Moreover, they provide low level monitoring 

capabilities to manage device networks at run-time. Finally, these platform projects 

develop and maintain standards for communication like MQTT as well as device 

management like OMA-DM. 

Some platforms provide functionality to rapidly build frontend applications for desktops 

as well as smartphones. Thingworx for example both claims to provide means for 

compressing the design-develop-deploy cycle. At the heart of these promises are IDEs 

that enable composition of applications that “integrate the data, activities, and events 

from people, systems, and the physical world” [00l]. More specifically these tools build 

upon modeling and configuration rather than “classical” programming. They offer tools 

to create HTML5-based user interfaces and lightweight frontend applications, e.g. on the 

basis of dashboards. Standard internet connectivity is leveraged to connect these frontend 

applications to the core application running on a central instance. 

 
Figure 2: Building blocks of an IoT architecture 

5 Summary and Outlook 

This paper contributes to the understanding of existing IoT platforms by giving an 

overview over available solutions and inducing a course grained IoT architecture model 
depicting fundamental functional building blocks. On the basis of our analysis we can 



conclude that while all platforms are marketed under the “IoT platform” label they are 

indeed quit different in respect to their functionality. Summing up, the solutions can be 

categorized into three different clusters: (1) Thingssquare and Eclipse focus on things by 

providing capabilities to develop embedded software being able to communicate on the 

basis of internet standards. (2) Axeda, Etherios and Xively provide middleware, i.e. 

functionality that enables the integration, coordination and management of multiple 

things. (3) Thingworx provides middleware as well as capabilities to rapidly build 

frontend applications. Finally, the platforms clearly reveal their origin. While Axeda, 

Eclipse, Etherios, and ThingWorx build upon the classical M2M scenario “central 
enterprise app receives data from various things”, only Thingssquare and Xively build 

upon key WSN ideas like self-organizing networks of smart objects. 

Our work is limited in that it only builds upon six existing platforms. Therefore, we 

encourage further research to extend and deepen the scope of our analysis. Furthermore, 

we encourage a systematic review of scientific work on IoT platforms. Moreover, there 

is a strong need to better understand the interplay between “new” IoT platforms and 

existing enterprise application landscapes. Ultimately, we see a new generation of things 
with unknown computing power and flexibility. This does not only transform things into 

more mighty general purpose computing devices, but also enables higher programming 

languages opening up devices for a much large developer community.  

Further research could focus on this phenomenon and evaluate how this progress 

changes the corresponding software development ecosystem and its impact on business 

solutions.  
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